Self-supervised Cross-modal Pretraining for Speech Emotion and Sentiment Analysis

Iek-Heng Chu^{1*}, Ziyi Chen^{1*}, Xinlu Yu¹, Mei Han¹, Jing Xiao² and Peng Chang¹

¹PAII Inc., Palo Alto, USA

²Ping An Technology, Shenzhen, China
{zhuyixing276,chenziyi253,yuxinlu698,hanmei613,changpeng805}@paii-labs.comxiaojing661@pingan.com.cn

2023. 3. 30 • ChongQing

- EMNLP 2022

Motivation

The first challenge is the limited availability of annotated data.

The second challenge is the learning of a multimodal feature space that can well distinguish among different emotions or sentiments, especially in the case of multimodal modeling.

Overview

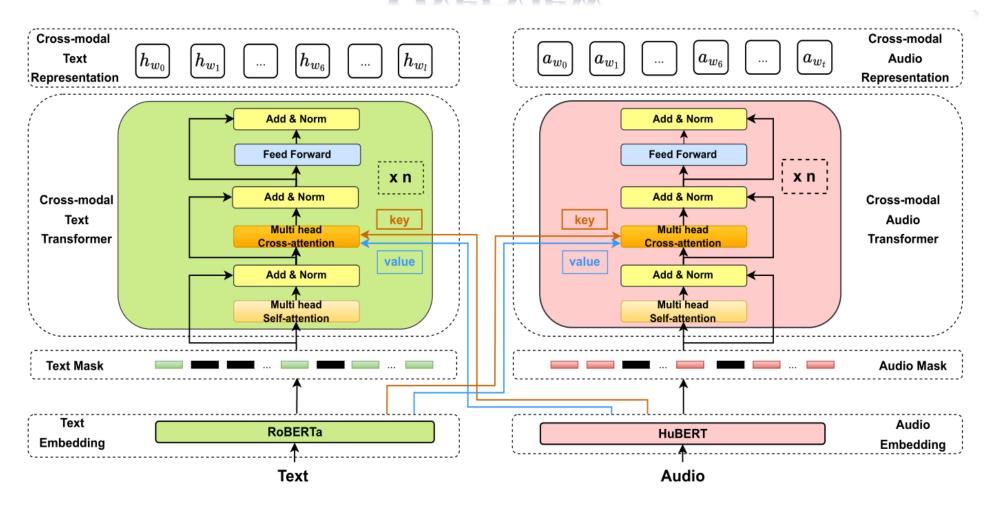
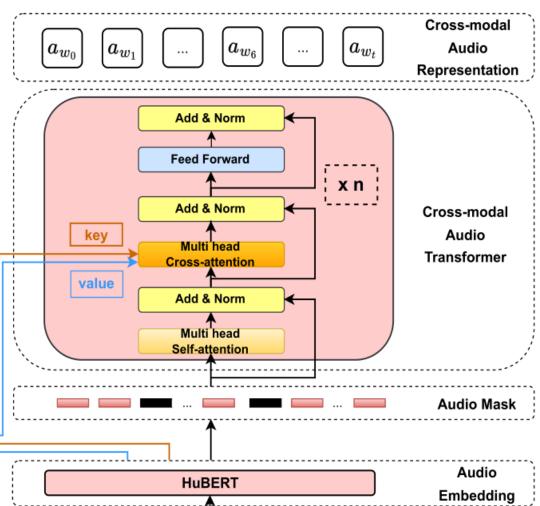


Figure 1: The architecture of the proposed cross-modal pretrained transformer model.



Audio

Method

$$\hat{h}_a^{[l+1]} = Attn(Q = h_a^{[l]}, K = h_a^{[l]}, V = h_a^{[l]}), \tag{1}$$

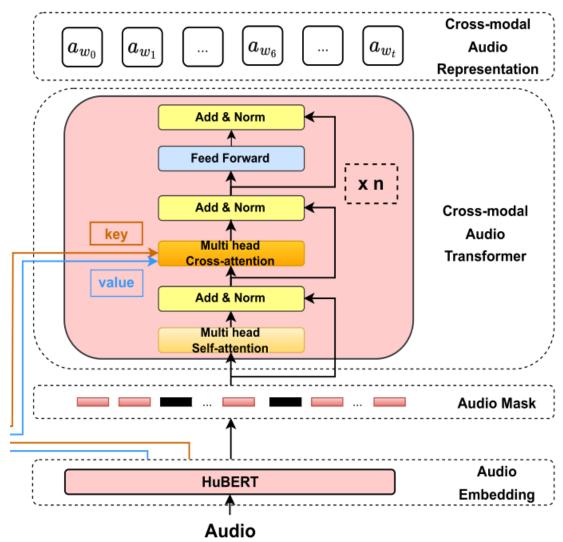
$$\dot{h}_a^{[l+1]} = LN(h_a^{[l]} + \dot{h}_a^{[l+1]}) \tag{2}$$

$$\ddot{h}_a^{[l+1]} = Attn(Q = \dot{h}_a^{[l+1]}, K = e_w, V = e_w)$$
(3)

$$\tilde{h}_a^{[l+1]} = LN(\ddot{h}_a^{[l+1]} + \dot{h}_a^{[l+1]}) \tag{4}$$

$$h_a^{[l+1]} = LN(FFN(\tilde{h}_a^{[l+1]}) + \tilde{h}_a^{[l+1]})$$
 (5)

Method



$$h_{\text{fuse}} = \bar{h}_a \oplus h_{w_0}, \tag{6}$$

$$L_{\text{ortho}} = \frac{|\bar{h}_a^{\text{T}} \cdot \bar{h}_w|}{\|\bar{h}_a\| \cdot \|\bar{h}_w\|}.$$
 (7)

$$L_{\rm FT} = L_{\rm task} + \alpha \cdot L_{\rm ortho},\tag{8}$$

Methods	Angry ↑	Нарру ↑	Neutral ↑	Sad ↑	WA ↑	UA ↑
MulT (Tsai et al., 2019)	0.739	0.848	0.625	0.777	-	-
JBLS (Siriwardhana et al., 2020)	0.920	0.870	0.809	0.908	-	0.734
CTAL (Li et al., 2021)	-	-	-	-	0.740	0.746
HuBERT	0.908	0.825	0.785	0.885	0.703	0.711
RoBERTa	0.902	0.850	0.782	0.869	0.702	0.709
Shallow-Fusion	0.901	0.849	0.789	0.895	0.717	0.728
CMT BASE	0.907	0.869	0.815	0.912	0.751	0.763
CMT LARGE	0.898	0.872	0.817	0.913	0.750	0.761

Table 1: Main experimental results on IEMOCAP emotion dataset, where emotion-wise (angry/happy/neutral/sad) binary accuracy, weighted accuracy (WA) and unweighted accuracy (UA) are presented.

Methods	Acc ₇ ↑	$\mathbf{Acc}_2 \uparrow$	F1-score ↑	MAE ↓
MulT (Tsai et al., 2019)	0.507	0.816	0.816	0.591
JBLS (Siriwardhana et al., 2020)	0.521	0.878	-	0.518
CTAL (Li et al., 2021)	-	0.808	0.810	0.603
HuBERT	0.486	0.796	0.799	0.634
RoBERTa	0.521	0.876	0.877	0.523
Shallow-Fusion	0.538	0.861	0.860	0.518
CMT BASE	0.546	0.880	0.878	0.501
CMT LARGE	0.545	0.885	0.885	0.500

Table 2: Main experimental results on CMU-MOSEI sentiment dataset, where 7-class accuracy (Acc₇), 2-class accuracy (Acc₂), F1 score, and mean absolute error (MAE) are presented.

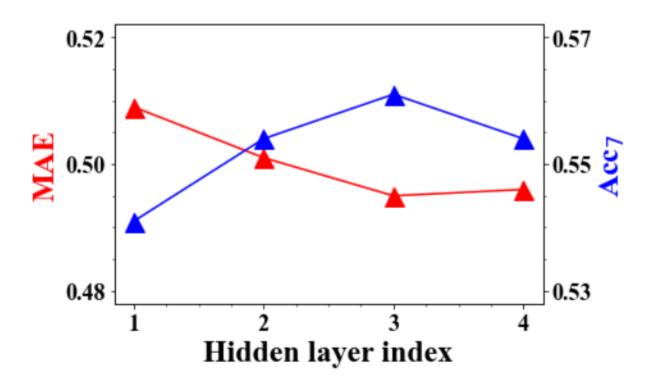


Figure 2: Impact of using different hidden states as the CMT-4 audio transformer representation on CMU-MOSEI metrics MAE (red) and Acc₇ (blue).

Layer index	1	2	3	4
Weight	0.175	0.438	0.277	0.109

Table 3: Learned weights of the layer pooler associated with different audio cross-modal transformer layers in the pretrained CMT-4 model.

Methods	Acc ₇ ↑	$\mathbf{Acc}_2 \uparrow$	F1-score ↑	MAE ↓
CMT-4 w/o PT	0.545	0.874	0.875	0.508
CMT-4 PT	0.554	0.870	0.871	0.496
CMT-4 PT + TAPT	0.559	0.866	0.869	0.502
CMT-4 PT + Layer pooler	0.545	0.864	0.863	0.509
CMT-4 PT + Ortho	0.554	0.879	0.878	0.493
CMT BASE	0.546	0.880	0.878	0.501
CMT LARGE	0.545	0.885	0.885	0.500

Table 4: The ablation analysis of our proposed CMT-4 model using CMU-MOSEI. The terms PT, TAPT, Layer pooler and Ortho refer to pretrained, task adaptive pretraining, weighted average layer of cross-modal audio transformer hidden states, and the orthogonality regularization term.

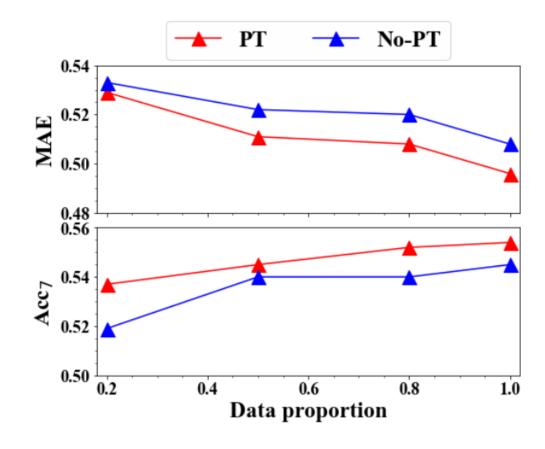


Figure 3: The performance of pretrained (PT) and non-pretrained (No-PT) CMT-4 models with different proportions of CMU-MOSEI training set.

Thanks!